3 research outputs found

    Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

    Full text link
    In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant of Jensen's inequality that extends the one for stochastic program. To solve this challenging problem, we present a variant of Benders decomposition method in bilinear form, which actually provides an easy-to-use algorithm framework for further improvements, along with a few enhancement strategies based on structural properties or Jensen's inequality. Computational study shows that the presented Benders decomposition method, jointly with appropriate enhancement techniques, outperforms a commercial solver by an order of magnitude on solving chance constrained program or detecting its infeasibility

    Extensions of Multistage Stochastic Optimization with Applications in Energy and Healthcare

    Get PDF
    This dissertation focuses on extending solution methods in the area of stochastic optimization. Attention is focused to three specific problems in the field. First, a solution method for mixed integer programs subject to chance constraints is discussed. This class of problems serves as an effective modeling framework for a wide variety of applied problems. Unfortunately, chance constrained mixed integer programs tend to be very challenging to solve. Thus, the aim of this work is to address some of these challenges by exploiting the structure of the deterministic reformulation for the problem. Second, a stochastic program for integrating renewable energy sources into traditional energy systems is developed. As the global push for higher utilization of such green resources increases, such models will prove invaluable to energy system designers. Finally, a process for transforming clinical medical data into a model to assist decision making during the treatment planning phase for palliative chemotherapy is outlined. This work will likely provide decision support tools for oncologists. Moreover, given the new requirements for the usage electronic medical records, such techniques will have applicability to other treatment planning applications in the future

    Extensions of Multistage Stochastic Optimization with Applications in Energy and Healthcare

    No full text
    This dissertation focuses on extending solution methods in the area of stochastic optimization. Attention is focused to three specific problems in the field. First, a solution method for mixed integer programs subject to chance constraints is discussed. This class of problems serves as an effective modeling framework for a wide variety of applied problems. Unfortunately, chance constrained mixed integer programs tend to be very challenging to solve. Thus, the aim of this work is to address some of these challenges by exploiting the structure of the deterministic reformulation for the problem. Second, a stochastic program for integrating renewable energy sources into traditional energy systems is developed. As the global push for higher utilization of such green resources increases, such models will prove invaluable to energy system designers. Finally, a process for transforming clinical medical data into a model to assist decision making during the treatment planning phase for palliative chemotherapy is outlined. This work will likely provide decision support tools for oncologists. Moreover, given the new requirements for the usage electronic medical records, such techniques will have applicability to other treatment planning applications in the future
    corecore